Classification of complex semisimple Lie algebras

نویسنده

  • Shiquan Ren
چکیده

Shiquan Ren Februry, 2010 Abstract: I want to write a summary of my study of complex semisimple Lie algebras, as my thesis for a bachelor degree. The classification of complex semisimple Lie algebras is obtained through the classification of simple root systems. Parallel to it, the classification of compact real Lie algebras can be obtained in a similar way. Only after these two classifications are completed, can we know that these two parallel ways are the same through complexification. This is proposition 2 and proposition 3. However, the conclusion of these two propositions does not depend on the classification theory, so if we could get an intrinsic proof, it would be sensible to use the real form to classify complex semisimple Lie algebras. Unfortunately, I do not know this intrinsic proof nor whether it exists. A simple root system is much more intuitive than a Lie algebra, since it can be expressed as a graph with directions. This is only a tool to classify Lie algebras. From my point of view, the crucial step is to decompose the Lie algebra g to be a direct sum of one-dimensional root spaces and a Cartan subalgebra, and the bracket product of these bases in these root spaces together with the Cartan subalgebra could uniquely determine g. All Cartan subalgebras are conjugate, so the structure of g does not depend on the choice of root systems. This is why we choose a root system for a Lie algebra, and the reason why the basis of a root system──a simple root system could reflect the structures of the corresponding Lie algebra faithfully.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex Lie Algebras

We prove that every Lie algebra can be decomposed into a solvable Lie algebra and a semisimple Lie algebra. Then we show that every complex semisimple Lie algebra is a direct sum of simple Lie algebras. Finally, we give a complete classification of simple complex Lie algebras.

متن کامل

Semisimple Algebraic Groups in Characteristic Zero

It is shown that the classification theorems for semisimple algebraic groups in characteristic zero can be derived quite simply and naturally from the corresponding theorems for Lie algebras by using a little of the theory of tensor categories. This article is extracted from Milne 2007. Introduction The classical approach to classifying the semisimple algebraic groups over C (see Borel 1975, §1...

متن کامل

Lecture 5: Semisimple Lie Algebras over C

In this lecture I will explain the classification of finite dimensional semisimple Lie algebras over C. Semisimple Lie algebras are defined similarly to semisimple finite dimensional associative algebras but are far more interesting and rich. The classification reduces to that of simple Lie algebras (i.e., Lie algebras with non-zero bracket and no proper ideals). The classification (initially d...

متن کامل

Classification of Finite-dimensional Semisimple Lie Algebras

Every finite-dimensional Lie algebra is a semi-direct product of a solvable Lie algebra and a semisimple Lie algebra. Classifying the solvable Lie algebras is difficult, but the semisimple Lie algebras have a relatively easy classification. We discuss in some detail how the representation theory of the particular Lie algebra sl2 tightly controls the structure of general semisimple Lie algebras,...

متن کامل

Representations of Complex Semi-simple Lie Groups and Lie Algebras

This article is an exposition of the 1967 paper by Parthasarathy, Ranga Rao, and Varadarajan, on irreducible admissible Harish-Chandra modules over complex semisimple Lie groups and Lie algebras. It was written in Winter 2012 to be part of a special collection organized to mark 10 years and 25 volumes of the series Texts and Readings in Mathematics (TRIM). Each article in this collection is int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011